NAG C Library Function Document

nag kruskal wallis test (g08afc)

1 Purpose

nag_kruskal_wallis_test (g08afc) performs the Kruskal-Wallis one-way analysis of variance by ranks on k independent samples of possibly unequal sizes.

2 Specification

3 Description

The Kruskal-Wallis test investigates the differences between scores from k independent samples of unequal sizes, the ith sample containing l_i observations. The hypothesis under test, H_0 , often called the null hypothesis, is that the samples come from the same population, and this is to be tested against the alternative hypothesis H_1 that they come from different populations.

The test proceeds as follows:

- (a) The pooled sample of all the observations is ranked. Average ranks are assigned to tied scores.
- (b) The ranks of the observations in each sample are summed, to give the rank sums R_i , for i = 1, 2, ..., k.
- (c) The Kruskal-Wallis' test statistic H is computed as:

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{l_i} - 3(N+1), \text{ where } N = \sum_{i=1}^{k} l_i,$$

i.e., N is the total number of observations. If there are tied scores, H is corrected by dividing by:

$$1 - \frac{\sum (t^3 - t)}{N^3 - N}$$

where t is the number of tied scores in a group and the summation is over all tied groups.

nag_kruskal_wallis_test returns the value of H, and also an approximation, p, to the probability of a value of at least H being observed, H_0 is true. (H approximately follows a χ^2_{k-1} distribution). H_0 is rejected by a test of chosen size α if $p < \alpha$. The approximation p is acceptable unless k=3 and l_1 , l_2 or $l_3 \leq 5$ in which case tables should be consulted (e.g., O of Siegel (1956)) or k=2 (in which case the Median test (see nag_median_test (g08acc)) or the Mann-Whitney U test (see nag_mann_whitney (g08amc)) is more appropriate).

4 Parameters

1: **k** – Integer Input

On entry: the number of samples, k.

Constraint: $k \geq 2$.

2: l[k] – const Integer Input

On entry: $\mathbf{l}[i-1]$ must contain the number of observations l_i in sample i, for $i=1,2,\ldots,k$. Constraint: $\mathbf{l}[i-1]>0$, for $i=1,2,\ldots,k$.

[NP3491/6] g08afc.1

3: x[lx] - const double

Input

On entry: the elements of x must contain the observations in the k groups. The first l_1 elements must contain the scores in the first group, the next l_2 those in the second group, and so on.

4: \mathbf{lx} - Integer Input

On entry: the total number of observations, N.

Constraint: $\mathbf{lx} = \sum_{i=1}^{k} \mathbf{l}[i-1]$.

5: **h** – double *

On exit: the value of the Kruskal-Wallis test statistic, H.

6: **p** – double *

On exit: the approximate significance, p, of the Kruskal-Wallis test statistic.

7: **fail** – NagError * *Input/Output*

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_INT_ARG_LT

On entry, **k** must not be less than 2: $\mathbf{k} = \langle value \rangle$.

NE_ARRAY_CONS

The contents of array I are not valid.

Constraint: I[i-1] > 0, for i = 1, 2, ..., k.

NE INT

On entry, $\mathbf{lx} = \langle value \rangle$.

Constraint: $\mathbf{lx} = \sum_{i=1}^{k} \mathbf{l}[i-1]$, for i = 1, 2, ..., k.

NE_X_IDEN

On entry, all elements of \mathbf{x} are equal.

NE_ALLOC_FAIL

Memory allocation failed.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

The time taken by the routine is small, and increases with N and k.

If k=2, the Median test (see nag_median_test (g08acc)) or the Mann–Whitney U test (see nag_mann_whitney (g08amc)) is more appropriate.

6.1 Accuracy

For estimates of the accuracy of the significance p, see nag_prob_chi_sq (g01ecc). The χ^2 approximation is acceptable unless k=3 and l_1, l_2 or $l_3 \leq 5$.

g08afc.2 [NP3491/6]

6.2 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill Moore P G, Shirley E A and Edwards D E (1972) Standard Statistical Calculations Pitman

7 See Also

```
nag_prob_chi_sq (g01ecc)
nag_median_test (g08acc)
nag_mann_whitney (g08amc)
```

8 Example

This example is taken from Moore *et al.* Moore *et al.* (1972). There are 5 groups of sizes 5, 8, 6, 8 and 8. The data represent the weight gain, in pounds, of pigs from five different litters under the same conditions.

8.1 Program Text

```
/* nag_kruskal_wallis_test (g08afc) Example Program.
* Copyright 2000 Numerical Algorithms Group.
* Mark 6, 2000.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg08.h>
int main (void)
 double h, p, *x=0;
 Integer count, i, ii, k, *l=0, lx, nhi, ni, nlo;
 Integer exit_status=0;
 NagError fail;
 INIT_FAIL(fail);
 Vprintf("g08afc Example Program Results\n");
/* Skip heading in data file */
 Vscanf("%*[^\n]");
 if (!(l =NAG_ALLOC(k, Integer)))
     Vprintf("Allocation failure\n");
     exit_status = -1;
     goto END;
    }
 for (i=1; i<=k; i++)
   Vscanf("%ld", &l[i-1]);
 Vprintf("\n");
 Vprintf("%s\n", "Kruskal-Wallis test");
 Vprintf("\n");
 Vprintf("%s\n","Data values");
 Vprintf("\n");
```

[NP3491/6] g08afc.3

```
Vprintf("%s\n"," Group Observations");
 1x = 0;
 for (i = 1; i \le 5; ++i)
   lx += l[i - 1];
 if (!(x = NAG_ALLOC(lx, double)))
     Vprintf("Allocation failure\n");
     exit_status = -1;
     goto END;
 for (i = 1; i \le lx; ++i)
   Vscanf("%lf", &x[i - 1]);
 nlo = 1;
 for (i = 1; i \le k; ++i)
     ni = 1[i - 1];
     nhi = nlo + ni - 1;
     Vprintf(" %5ld ", i);
     count = 1;
     for (ii = nlo; ii <= nhi; ++ii)
  Vprintf("%4.0f%s", x[ii - 1], count%10?"":"\n");
   count++;
}
     nlo += ni;
     Vprintf("\n");
 g08afc(k, l, x, lx, &h, &p, &fail);
 if (fail.code != NE_NOERROR)
  Vprintf("Error from g08afc.\n%s\n", fail.message);
  exit_status = 1;
  goto END;
 Vprintf("\n");
 \label{lem:printf("%s%9.3f\n", "Test statistic", h);} Vprintf("%s%9.3f\n", "Test statistic", h);
 Vprintf("%s%9ld\n", "Degrees of freedom ", k-1);
 Vprintf("%s%9.3f\n","Significance
                                             ", p);
END:
 if (1) NAG_FREE(1);
 if (x) NAG_FREE(x);
 return exit_status;
}
```

8.2 Program Data

```
g08afc Example Program Data
5 8 6 8 8
23 27 26 19 30 29 25 33 36 32
28 30 31 38 31 28 35 33 36 30
27 28 22 33 34 34 32 31 33 31
28 30 24 29 30
```

g08afc.4 [NP3491/6]

8.3 Program Results

g08afc Example Program Results

Kruskal-Wallis test

Data values

Group	Observations							
1	23	27	26	19	30			
2	29	25	33	36	32	28	30	31
3	38	31	28	35	33	36		
4	30	27	28	22	33	34	34	32
5	31	33	31	28	30	24	29	30

Test statistic 10.537
Degrees of freedom 4
Significance 0.032

[NP3491/6] g08afc.5 (last)